博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
基于winner 滤波平稳降噪效果
阅读量:5923 次
发布时间:2019-06-19

本文共 1745 字,大约阅读时间需要 5 分钟。

https://en.wikipedia.org/wiki/Wiener_filter

Wiener filter solutions

The Wiener filter problem has solutions for three possible cases: one where a noncausal filter is acceptable (requiring an infinite amount of both past and future data), the case where a  filter is desired (using an infinite amount of past data), and the  (FIR) case where a finite amount of past data is used. The first c

ase is simple to solve but is not suited for real-time applications. Wiener's main accomplishment was solving the case where the causality requirement is in effect, and in an appendix of Wiener's book  gave the FIR solution.

Noncausal solution

G(s) = \frac{S_{x,s}(s)}{S_x(s)}e^{\alpha s}.

Where S are spectra. Provided that g(t) is optimal, then the  equation reduces to

E(e^2) = R_s(0) - \int_{-\infty}^{\infty}{g(\tau)R_{x,s}(\tau + \alpha)\,d\tau},

and the solution g(t) is the inverse two-sided  of G(s).

Causal solution

G(s) = \frac{H(s)}{S_x^{+}(s)},

where

  • H(s) consists of the causal part of \frac{S_{x,s}(s)}{S_x^{-}(s)}e^{\alpha s} (that is, that part of this fraction having a positive time solution under the inverse Laplace transform)
  • S_x^{+}(s) is the causal component of S_x(s) (i.e., the inverse Laplace transform of S_x^{+}(s) is non-zero only for t \,\ge\, 0)
  • S_x^{-}(s) is the anti-causal component of S_x(s) (i.e., the inverse Laplace transform of S_x^{-}(s) is non-zero only for t < 0)

This general formula is complicated and deserves a more detailed explanation. To write down the solution G(s) in a specific case, one should follow these steps:

  1. Start with the spectrum S_x(s) in rational form and factor it into causal and anti-causal components:
    S_x(s) = S_x^{+}(s) S_x^{-}(s)
    where S^{+} contains all the zeros and poles in the left half plane (LHP) and S^{-} contains the zeroes and poles in the right half plane (RHP). This is called the .
  2. Divide S_{x,s}(s)e^{\alpha s} by S_x^{-}(s) and write out the result as a partial fraction expansion.
  3. Select only those terms in this expansion having poles in the LHP. Call these terms H(s).
  4. Divide H(s) by S_x^{+}(s). The result is the desired filter transfer function G(s).

 

原始文件,环境噪音已经很弱了

 

逐帧实时维纳滤波后

 

转载地址:http://fxavx.baihongyu.com/

你可能感兴趣的文章
【转载】https连接的前几毫秒发生了什么
查看>>
git config 的全局配置
查看>>
C++代码风格
查看>>
[转载]MySQL索引原理与慢查询优化
查看>>
转:SQL 日期时间格式转换
查看>>
1、设计模式-相关概念
查看>>
C# Interface显式实现和隐式实现
查看>>
二级域名和一级域名的区别
查看>>
Flask 源码流程,上下文管理
查看>>
c语言32个关键字
查看>>
多线程-并发基础
查看>>
[工具类]泛型集合转换为DataTable
查看>>
Linux下的rename命令
查看>>
吃在青岛--百年老街劈柴院
查看>>
Java Web 基础(一) 基于TCP的Socket网络编程
查看>>
GridView之CommandField的妙用——点击提示删除
查看>>
nil、Nil、NULL、NSNull的区别
查看>>
面向对象初体验-计算器
查看>>
增加简体中文语言环境
查看>>
java中的泛型
查看>>